笔趣阁

手机浏览器扫描二维码访问

第91章 第一节课(第2页)

然后便继续讲课“讲戴德金分割定理之前,我需要先讲一下戴德金分划”

“那么戴德金分个定理对r的任一分划(aib),b中必有最小数。”

“有界集与确界,都是概念性的,你们自己看,我就不讲了。”

“几个常用不等式也有证明方法,比较简单,自己看。”

“那么下面讲函数”

陈舟有些无语的看着讲台上滔滔不绝的吴教授,这是讲课吗?这比他翻书还快

很快,第一章结束,吴教授开始讲第二章,序列的极限。

陈舟不禁感慨了一句,幸好把高数自学完了,要不他还真怀疑自己能否跟上进度。

那个戴德金分划和戴德金分割定理,就不是好理解的玩意。

只不过,陈舟发现赵琦琦和朱明理两人眼神熠熠闪光,听得津津有味。

寝室第四人李礼,也正自个埋头看书。

“果然打游戏都是假象”陈舟默默在心中说了一句,然后又看了一圈班里的其他同学。

除了极少数几个人,可以明显看出跟不上进度,大部分的同学,要么聚精会神的在听课,要么低头在自学。

距离下课前还剩二十分钟,吴教授停下来喝了口水,然后说道“我们今天就讲这么多吧,进度稍微有点慢。下面,是这堂课的答题时间。”

说完,吴教授转身开始在黑板上写题目。

陈舟翻了翻书,黄皮肤的数分教材已经讲了两章,这进度,算慢?

吴教授在黑板上出完题目,又转回身来跟大家说道“每个人自己找草稿纸,写上姓名和答案。如果不会,只写姓名也行。”

陈舟先拿出草稿纸,把名字写上,然后抬头看着黑板,把题目抄在草稿纸上。

“设xn=(1+((-1)n)n)n,n=1,2,3,试证明{xn}为发散序列。”

题目很短,陈舟只看了一眼,审题完成。

吴教授在第一节课还是没有太为难大家的,这道题不难。

陈舟写到

“证明由于k→+∞li(1+((-1)2k)2k)2k=e”

“而k→+∞li(1+((-1)(2k+1))(2k+1))(2k+1)=k→+∞li[1((1+12k)2k+1)]·[1(1+12k)]=1e”

“因此n→∞lixn不存在。”

“得证{xn}为发散序列。”

证明过程也很简单,主要利用实数系连续性的基本定理。

陈舟检查一遍,没有问题,便起身准备把草稿纸交给吴教授。

陈舟注意到,此时的教室里,还剩下十几个人。

而他寝室的三位老弟,也早已离开。

陈舟礼貌的把草稿纸递给吴教授,便离开了教室。

。:..

热门小说推荐
国家意志

国家意志

未来空战,龙象之争。...

赵峰柳琴韵

赵峰柳琴韵

新书推荐,赵峰柳琴韵由快餐店所编写的玄幻科幻类型的小说,本小说的主角赵峰赵雪,书中主要讲述了他意志坚韧,不甘平庸,却资质平平,出自卑微的支族。一次意外,他融合一只太古神灵的眼睛,从此鲤鱼跃龙门,如彗星般崛起,踏上传奇修行之路。从渺小蝼蚁的世界底层,步步生莲,踏入这个宗门林立天才如云远古万族神话争锋波澜壮阔的大时代。...

武遁

武遁

纵横都市,一手遮天。武破虚空,遁破大千。这里有激情有热血,有奇诡多变,超乎想象的种种武技,也有缠绵悱恻,激情动人的缕缕爱情。请进入抱香为您构筑的玄幻武者世界。人间武者等级见习武者精英武者王牌武者荣誉武者辉煌武者天阶武者...

正义迷途

正义迷途

谨以此书,献给那些在黑暗中苦苦挣扎,但仍对社会与未来抱有美好憧憬的人。本书会有你想看到的各种离奇案件,但随着凶手最后的落网,事情真的结束了吗?本书双男主,各有cp。作者第一次开坑,欢迎广大读者提出意见与建议!...

洛先生,不许跟我抢妈咪

洛先生,不许跟我抢妈咪

作者卿卿误我的经典小说洛先生,不许跟我抢妈咪最新章节全文阅读服务本站更新及时无弹窗广告小说死里逃生,五年后带着萌宝归来。沈觅想从前的那些账,总该算算了吧?只不过你不会忘了,自己还有一个洛家少夫人的头衔吧?沈小姐。男人好心提醒。...

每日热搜小说推荐