手机浏览器扫描二维码访问
陈舟把两道题目抄录在草稿纸上,准备研究研究。
这两道题的题目都很简单,富有短小精悍的美感。
但是解起来,难度倒是不小。
毕竟,说是一回事,真去做,去研究,就又是另外一回事了。
陈舟转着笔,思考着相应的解法。
思索了一会,陈舟提笔开始解决这道题。
“若f(x)≠0,则结论为真”
“可以证明至少存在n1个x1,x2,x3,,xn1∈(a,b),且x1<x2<x3<xn1,使f(xi)=0,(i=1,2,,n1)”
写到这,陈舟停顿了一下,他有种很怪的感觉。
但陈舟又说不出这种感觉是什么。
摇了摇头,陈舟继续写到“假设这样的点只有个则有x0→x1∫c’xf(x)dxx1→x2∫c’xf(x)dxx→x1∫c’xf(x)dx=0”
“由积分中值定理,存在ξi(i=1,2,,)使得”
“再由c的任意性,且范德蒙德行列式不等于零,得”
“从而f(x)=0,与f(x)≠0矛盾。”
这道题目的解决,陈舟是按照自己的思路,把数学分析和高等代数知识进行了横向联系,运用于解题。
陈舟看着自己写下的步骤,用高等代数的方法解决了纯数学分析的问题。
再梳理了一遍,陈舟又有了那种奇怪的感觉。
难道是因为第一次把不同课程之间相互渗透溶合,去解决题目所产生的的怪异感?
思考了一会,陈舟并没有得到一个肯定的答案。
他抬手看了眼手表,已经快12点了,李礼三人也还在看书。
陈舟起身去洗了把脸,再回到书桌前,继续看下一题。
下一题是用数学分析的方法去解决纯高等代数的问题。
一道很典型的题目,题干只有一句话。
“设ai>0,且ai全不相同,i=1,2,,n,求证方阵a(1(aiaj))为正定阵。”
陈舟看完,略一思索,他已经有了思路。
这道题为什么说典型,是因为它需要用到典型的数学分析方法,广义积分∫∞e(-ax)dx=1a(a≠0)。
“首先为实对称阵,任意x,就可以引入积分进行计算了。”
思路不断,下笔如神。
陈舟握笔的手不断游动,在草稿纸上写出自己的解题过程。
“因为a1,,an彼此不同,若x1e(-a1t)xne(-ant)=0,必有x1==xn=0,故相互矛盾。”
写到这,答案基本上出来了。
陈舟那种奇怪的感觉又冒了出来。
陈舟先不管这感觉,按照思路,把整个题目解决。
“利用上述结论,可以证得矩阵是正定的。”
题目本身的问题解决了,但陈舟那奇怪的感觉,却没有找到答案。
陈舟看了眼时间,才过去半个小时,时间还早。
他把草稿纸放在一边,打算重新做一遍这两道题。
数分题就用数学分析的方法,高代题就用高等代数的方法。
陈舟觉得能从题目里找到联系,题目会告诉他答案。
。
未来空战,龙象之争。...
...
新书推荐,赵峰柳琴韵由快餐店所编写的玄幻科幻类型的小说,本小说的主角赵峰赵雪,书中主要讲述了他意志坚韧,不甘平庸,却资质平平,出自卑微的支族。一次意外,他融合一只太古神灵的眼睛,从此鲤鱼跃龙门,如彗星般崛起,踏上传奇修行之路。从渺小蝼蚁的世界底层,步步生莲,踏入这个宗门林立天才如云远古万族神话争锋波澜壮阔的大时代。...
纵横都市,一手遮天。武破虚空,遁破大千。这里有激情有热血,有奇诡多变,超乎想象的种种武技,也有缠绵悱恻,激情动人的缕缕爱情。请进入抱香为您构筑的玄幻武者世界。人间武者等级见习武者精英武者王牌武者荣誉武者辉煌武者天阶武者...
谨以此书,献给那些在黑暗中苦苦挣扎,但仍对社会与未来抱有美好憧憬的人。本书会有你想看到的各种离奇案件,但随着凶手最后的落网,事情真的结束了吗?本书双男主,各有cp。作者第一次开坑,欢迎广大读者提出意见与建议!...
作者卿卿误我的经典小说洛先生,不许跟我抢妈咪最新章节全文阅读服务本站更新及时无弹窗广告小说死里逃生,五年后带着萌宝归来。沈觅想从前的那些账,总该算算了吧?只不过你不会忘了,自己还有一个洛家少夫人的头衔吧?沈小姐。男人好心提醒。...